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SUMMARY

We model an outbreak of acute haemorrhagic conjunctivitis (AHC) using a simple epidemic model
that includes susceptible, infectious, reported, and recovered classes. The model’s framework considers
the impact of underreporting and behaviour changes on the transmission rate and is applied to a recent
epidemic of AHC in Mexico, using a �t to the cumulative number of cases to estimate model parameters,
which agree with those derived from clinical studies. The model predicts a ‘mean time from symptomatic
onset to diagnosis’ of 1:43 days (95 per cent CI: 1–2.5) and that the �nal size of the Mexican epidemic
was underreported by 39 per cent. We estimate that a primary infectious case generates approximately
3 secondary cases (R∗

0 = 2:64, SD 0:65). We explore the impact of interventions on the �nal epidemic
size, and estimate a 36 per cent reduction in the transmission rate due to behaviour changes. The
e�ectiveness of the behaviour changes in slowing the epidemic is evident at 21:90 (SD 0:19) days
after the �rst reported case. Results therefore support current public health policy including expeditious
announcement of the outbreak and public health information press releases that instruct individuals on
avoiding contagion and encourage them to seek diagnosis in hospital clinics. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Acute haemorrhagic conjunctivitis (AHC) is a communicable disease typical of tropical,
coastal cities. Outbreaks usually last 1–2 months, and secondary attack rates are greater than
50 per cent within households [1]. Susceptible individuals exposed to the virus experience a
short (1–2 days) incubation period followed by the onset of painful, swollen, red (in�amed)
eyes. Lacrimation, foreign-body sensation and subconjunctival haemorrhaging are common
[2]. Transmission occurs primarily via person-to-person contact or contact with contaminated
objects (e.g. towels). Symptoms usually persist for 3–7 days with no long-term consequences.
Because of this absence of sequelae, many cases are not properly reported to public health
institutions [3], and this contributes to the disease’s further spread. Conversely, properly re-
ported individuals are guided in avoiding further disease transmission. Isolation is a key
prophylactic strategy, but in developing countries like Mexico, o�cial diagnosis is required
to justify worker sick leave for home isolation—which accelerates recovery and reduces fre-
quency and duration of infectious public contact. This sick leave requirement may make it
less likely that infectious individuals will isolate from coworkers, thus potentially increasing
the �nal epidemic size.
Multiple viruses have been identi�ed as aetiological agents of AHC, including enterovirus

70, coxsakievirus A24 variant (CA24v) and adenovirus 11. These agents have been identi�ed
by centrifugation, enhanced culture, neutralization tests, and other methods [4]. Enterovirus 70
was the �rst identi�ed agent in a 1969 outbreak in western Africa. Enterovirus 70 invaded the
western hemisphere in 1981, causing several outbreaks of AHC in Central America [5], South
America [6], and Florida [7]. The coxsakievirus A24 variant (CA24v) was �rst identi�ed in
Singapore in 1970 [8], and �rst linked to an AHC outbreak in the western hemisphere on
the islands of Trinidad, Jamaica and St. Croix, U.S. in the fall of 1986 [9]. Only months
later, an outbreak of CA24v-caused AHC was observed in the Yucatan Peninsula of Mexico,
where the secondary attack rate in households was 37 per cent [10]. The most recent reported
epidemics of AHC have occurred in Delhi, North India in 1996 (enterovirus 70) [4]. In Saint
Croix (CA24v), 1051 cases were reported in 1998 [1], and more than one million people
were infected with AHC (CA24v) in South Korea [11] in 2002.
The goal here is to explore the role of non-reported AHC cases and the impacts of docu-

mented intra-outbreak behavioural changes on the dynamics of AHC contagion. A model for
the 2003 outbreak of AHC in the state of Colima, Mexico is introduced. Using the model,
epidemiological and control parameters and the number of secondary cases generated by a
primary case in a fully susceptible population are estimated.
After presenting the model, an expression for its basic reproductive number (R∗

0) is com-
puted. The parameter estimation procedure (in the context of available data) is described and
an expression for the variance of R∗

0 is derived. Subsequent to performing an analysis on
parameter identi�ability, a model-free estimate of the diagnostic rate is presented. Finally,
results are summarized and their implications discussed.

2. MODEL
2.1. Epidemic model

The model (Figure 1) for the transmission dynamics of AHC classi�es individuals as suscep-
tible (S), exposed (E), infectious (I), diagnosed=reported (J ), and recovered but not reported

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. (in press)
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Figure 1. Schematic representation of the �ow of individuals among the di�erent classes. Susceptible
individuals in contact with the virus enter the exposed class at the rate �(t)I=N where �(t) is the
time-dependent transmission rate, I is the number of infectious individuals, and I=N is the probability
that a contact is made with an infectious individual. The timescale of AHC outbreaks is typically much
faster than those of demographic processes (births and deaths) (N is constant), and the �nal epidemic
size was small compared to N . Hence, assuming a constant population size at risk is reasonable.
Diagnosed=reported individuals are educated on how to avoid further contact with susceptible individuals.
Hence, their contribution to further disease transmission is assumed to be negligible. Exposed individuals
enter the infectious class at constant rate k (mean latent period is 1=k). Infectious individuals are either
diagnosed (reported) at the time-dependent rate, �(t), or recover at the constant rate, �, without being
diagnosed (underreported). Recovered individuals acquire immunity to the causative AHC virus strain for

at least the duration of the outbreak, in agreement with the epidemiology of AHC [12].

(U ). Susceptible individuals in contact with the virus enter the exposed class at the rate
�(t)I(t)=N where �(t) is the time-dependent transmission rate, I(t) is the number of infectious
individuals at time t and N (t)= S + E + I + J + U is the total population at time t. We
assumed homogeneous mixing between individuals and, therefore, the fraction I(t)=N is the
probability that a random contact would be with an infectious individual. The timescale of
AHC outbreaks is typically much faster than those of demographic processes (births and
deaths), and the �nal epidemic size is small compared to N . Hence, we assumed that the size
of the at-risk population is constant.
Since only diagnosed individuals in hospitals or clinics are granted sick days (Mexican

policy) then high underreporting rates were observed during AHC outbreaks [13], limiting the
impact of such a policy. These assumptions and practices add support to the homogeneous
mixing modelling assumption (see, for example, References [14–18]). The incorporation of
detailed population structure into the model (see, for example, References [19–21] and refer-
ences therein) would not only increase the model complexity but also augment the number of
parameters that must be estimated. The implementation of mathematical models can require
highly detailed data that is often not available or di�cult to get.
Once individuals are diagnosed=reported and, consequently, ‘educated’ on how to avoid

further contact with susceptible individuals, we assumed that their contribution to further
disease transmission is negligible. Exposed individuals enter the infectious class at constant
rate k (mean latent period is 1=k). Infectious individuals are either diagnosed (class J ) at the
time dependent rate �(t) or recover at the constant rate � without being diagnosed (class U ).
Recovered individuals are assumed to acquire immunity to the causative AHC virus strain for
at least the duration of the outbreak, an assumption that is in agreement with the epidemiology
of AHC [12].

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. (in press)
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The transmission process (single outbreak) can be modelled using the system of non-linear
di�erential equations:

Ṡ(t) =−�(t)S(t)I(t)=N
Ė(t) = �(t)S(t)I(t)=N − kE(t)
İ(t) = kE(t)− (�(t) + �)I(t)
J̇ (t) = �(t)I(t)

U̇ (t) = �I(t)

(1)

where the dot denotes the time derivatives. To account for behavioural changes in the popu-
lation, the transmission rate �(t) is modelled by the step function

�(t)=

{
�0 t¡�

�1 t¿�

where �1¡�0 and � is the day when behavioural changes began to have a signi�cant impact
on transmission. The use of a time-dependent diagnostic rate �(t) is used to account for the
low reporting rate at the beginning of the outbreak (before behavioural changes began to have
an e�ect on the transmission dynamics of AHC) (Figure 2). For simplicity, the diagnostic

20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200

Time (days)

D
ai

ly
 n

um
be

r 
of

 A
H

C
 c

as
es

Onset of symptoms
diagnosis

0

Figure 2. Daily number of AHC cases reported by date of symptom onset and date of case noti�cation
(from the 2003 outbreak in Colima, Mexico).
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rate �(t) is also modelled by a step function:

�(t)=

{
�0 t¡�

�1 t¿�

where �0¡�1. The model was unable to reproduce the beginning of the outbreak whenever
�0 = �1.

2.2. The reproductive number, R∗
0

The number of secondary cases generated by a primary infectious case or basic reproductive
number (R0) [22–24] is a measure of the power of an infectious disease to spread in a
susceptible population at a demographic steady state. Once an epidemic is underway, the
e�ective reproductive number (R(t)) decreases as the susceptible population is depleted, and
as public health measures begin to take hold.
Public health measures may include contact tracing followed by quarantine, isolation, vacci-

nation (if available), surveillance controls at ports of entry, and education of the population by
fact-sheet dissemination. The number, type, and intensity of the control measures will depend
on the disease in question and the availability of resources.
Since AHC disease symptoms vary among individuals, those with mild symptoms may never

be properly diagnosed in hospital clinics, while mild cases may lead to higher incidence of
infection at work or school leading to higher transmission rates in households. For benign
diseases like AHC, public health recommendations include the following:

• the avoidance of direct or indirect (object sharing) contact with AHC cases;
• movement restrictions on infected individuals (sent home from school or work while
symptomatic); and,

• increased hand washing [1].
Apropos the second recommendation, control of the AHC epidemic in Florida in 1981 was
accelerated by closing a�ected schools. Likewise, during the 2002 AHC epidemic in South
Korea [11], 1100 schools were closed.
The reproductive number (R∗

0) depends upon the activity of a typical infective in a large sus-
ceptible population at a demographic steady state. Typically, a minimal number of the initially
infected people will be diagnosed (reported) at the rate �0 (our estimate �0 ≈ 0:08 day−1).
This incidental diagnostic behaviour will a�ect the initial spread of the disease. Hence, the
reproductive number R∗

0(�0) is related to the basic reproductive number R0 by the expression
R∗
0(0)=R0. R

∗
0(�0)=�0=(� + �0) (Appendix A), that is, the product of the initial transmis-

sion rate (�0) and the average infectious period (1=�) discounted by the initial diagnostic
rate (�0).

2.3. Epidemic data

The State of Colima is located on the Paci�c coast, with a tropical climate, a mean annual
temperature of 23–26◦C, and an approximate population of 488 028 [25]. Data from the
adenovirus-provoked AHC outbreak of September–November, 2003, were extracted from 1310
clinical records generated by the Mexican Institute of Public Health (IMSS) which provides
service to 60 per cent (292 820) of the total Colima population. The relative frequency of
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symptoms presented, the spatial and age-speci�c incidence distributions and the distribution
of the time from the onset of symptoms to noti�cation has been reported elsewhere [13].
Figure 2 shows the daily number of AHC cases by the time of onset of symptoms and by
the time of noti�cation.

3. PARAMETER ESTIMATION

The following disease-related parameters were estimated: (�0; �1; k, and �), the time at which
behavioural changes started to take place (�), the mean time from symptom onset to di-
agnosis before and after interventions took e�ect (1=�0 and 1=�1), and the initial numbers
of exposed and infectious individuals (E(0) and I(0)) by least-squares �t of J (t;�) in
model (1) (� is the vector of �tting parameters) to the cumulative number of AHC cases
by date of case noti�cation (Figure 2) under appropriate initial conditions. The best-�tting
parameters were obtained by a 10-fold repeat of our �tting procedure (with di�erent ini-
tial conditions) with parameters randomly drawn from appropriate parameter ranges
(0¡�0¡10, 0¡�1¡10, 0¡�¡100, 0¡k¡2, 0¡�¡1, 0¡�0¡1, 0¡�1¡1). The result-
ing parameter estimates are listed in Table I, and the best model �t to the data is shown in
Figure 3.
The standard deviation of the parameters was estimated by computing the asymptotic

variance–covariance AV (�̂) matrix of the least-squares estimate from the expression:

AV(�̂)=�2B(�0)∇�J(�0)TG∇�J(�0)B(�0)

where B(�0)= [∇�J(�0)T∇�J(�0)]−1. An estimate of this expression is the following

�̂2B̂(�̂)∇�Ĵ(�̂)TG∇�Ĵ(�̂)B̂(�̂)

where B̂(�̂)= [∇�Ĵ(�̂)T∇�Ĵ(�̂)]−1, �̂
2 =

∑
(yi − J (ti; �̂))2=(I1xn G Inx1) and ∇�Ĵ are

numerical derivatives of J (�̂). In order to account for the stochastic temporal dependence
of the cumulative number of cases, the error structure [27] is modelled using a Brownian
bridge (G). Here, G is an n × n matrix such that Gi; j=(1=n)min(i; j) − (ij)=n2 where n is
the total number of observations. That is, G captures the higher variability in the cumulative
number of cases observed on the middle course of the epidemic and the smaller variability
observed at its beginning and end.

3.1. Estimation of the variance of R∗
0

An expression for the variance of the estimated reproductive number (R∗
0) was obtained.

T1; T2 and T3 were designated as random variables with means �0; �0; �0 and de�ned, such that
T=(T1; T2; T3) and �=(�0; �0; �). Using the Taylor series approximation of our R∗

0 expression
about � (delta method [28]) we obtain the following:

R∗
0(t) ≈ gi(�) +

3∑
i=1
g′(�)(ti − �i)

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. (in press)
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Table I. De�nitions and estimates for parameters in model (1) obtained from the best least-squares �t to
the cumulative number of reported AHC cases.

Parameter De�nition Estimate SD

�0 Mean transmission rate prior to behavioural changes (day−1 infective−1) 0.99 0.29
�1 Mean transmission rate after behavioural changes (day−1 infective−1) 0.63 0.11
� Approximate time at which behavioural changes take place (day) 21.90 0.19
k Rate of progression from the exposed to the infectious state (day−1) 0.27 0.07
� Recovery rate (day−1) 0.30 0.09
�0 Diagnostic rate prior to behavioural changes (day−1) 0.08 0.01
�1 Diagnostic rate after behavioural changes (day−1) 0.70 0.15
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Figure 3. The best-�t solution obtained by �tting J (t;�) (solid line) in model (1) to the cumu-
lative number of reported AHC cases (circles) as explained in the text (coe�cient of determi-
nation is approximately 0.99 [26]). The dash–dot curve is the cumulative number of AHC unre-
ported cases and the dash–dash curve is the number of cases incubating the disease. Model (1)
predicts that behavioural changes began to have an e�ect on the transmission rate approximately

22 days after the �rst reported case.

The variance of R∗
0(T) is approximated by

V (R∗
0(T)) ≈

3∑
i=1
[g′
i(�)]

2V (Ti) + 2
∑
i¿j
g′
i(�)g

′
j(�)Cov(Ti; Tj)
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Hence, the variance of the estimated R∗
0 is

V (R̂
∗
0)≈ R̂∗2

0

{
V (�̂0)

�̂
2

0

+
V (�̂)

(�̂+ �̂0)2
+

V (�̂0)
(�̂+ �̂0)2

−
(

2

�̂0(�̂+ �̂0)

)(
Cov(�̂; �̂0)− �̂0Cov(�̂0; �̂)

�̂+ �̂0
+ Cov(�̂0; �̂0)

)}
(2)

The corresponding values for the variance and covariance terms are obtained directly from
the estimated variance–covariance matrix AV(�̂).

3.2. Parameter identi�ability analysis

We quanti�ed the uncertainty in parameter estimates by systematically exploring the iden-
ti�ability of the model parameters. Non-identi�ability problems arise when small variations
in model output correspond to large variations in some model parameters [29]. The best �t
of the cumulative number of reported cases J (t;�) to the data was perturbed by simulating
alternate realizations. To the best-�t curve J (t;�) was added a simulated Brownian bridge
error structure computed using the increment in the ‘true’ J (t;�) from day i to day i+ 1 as
the Poisson mean for the number of new cases observed in the i to i+1 interval. The param-
eter estimation procedure (described above) was then applied for each of the 1000 simulated
realizations. The histograms of the parameter estimates from these simulations are shown in
Figure 4, their nominal con�dence intervals in close agreement with those obtained from the
asymptotic variance–covariance matrix AV(�) (Table I).
To study the applicability of the epidemic model to other outbreaks of AHC, the iden-

ti�ability of model parameters was explored by performing a large number of simulations
with parameter values randomly drawn from plausible ranges. Results were obtained from
simulations of 20 sets of parameter values obtained by dividing the plausible range of each
parameter (�0 : 0:5–5, �1 : 0:3–5, � : 15–30, k : 0:1–2, � : 0:1–1, �0 : 0:05–0.5, �1 : 0:1–1) into 20
equal parts which are randomly permuted to generate 20 di�erent sets of parameter values. For
each set of parameter values, 100 alternate realizations of the cumulative number of reported
cases J (t;�) were simulated by adding the simulated Brownian bridge error structure. The
nominal 95 per cent con�dence intervals for the estimated parameters for each of the sim-
ulated realizations using our parameter estimation procedure (Table II) were then generated.
The implications of these results are presented in Section 4.

3.3. Model-free estimate of the diagnostic rate

The mean time from symptom onset to diagnosis was estimated from clinical record data via
maximum likelihood methods [30] (that is, independent of our ordinary di�erential equation
model (1)). The date of symptomatic onset was missing or not properly recorded in 22 clinical
records. Therefore, only 1288 (out of 1310) clinical records were considered. We let t1; : : : ; tn
be the ‘times from symptom onset to diagnosis’ (days) obtained from clinical records of each
of the diagnosed (reported) individuals during the epidemic. The distribution of the ‘times
from onset to diagnosis’ is well approximated by an exponential distribution (Figure 5). Hence,
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to each of them. The nominal con�dence intervals are in close agreement with those obtained from the

asymptotic variance–covariance matrix AV(�) (Table I).

the mean time to diagnosis (�) is estimated by maximizing the log-likelihood equation

‘(�|t1; : : : ; tn)= −
[

n∑
i=1
ti + n ln(�)

]
(3)

where the maximum likelihood estimator (MLE) of � is the sample mean �̂= 1
n

∑n
i= 1 ti whose

variance is Var(�̂)= �̂
2
=n.

4. RESULTS

Using a simple epidemiological model, the relevant parameters were estimated, agreeing well
with actual data (see Figure 3), with a coe�cient of determination of approximately 0.99
[26]. In turn, parameter estimates can be used to estimate the reproductive number and �nal
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Figure 5. Semi-log plot of the distribution of the ‘time from onset to diagnosis’ obtained from the
1310 clinical records of AHC. Circles are the data and the solid straight line supports an exponential
distribution. The maximum likelihood estimates of the mean and variance for the time of onset to

diagnosis are 1.55 days (95 per cent CI: 1.46–1.63) and 2:39 day2, respectively.

epidemic size, which was approximated as 2115 AHC cases, with an underreporting rate of
approximately 38.7 per cent.
Behaviour changes began to have an impact on the transmission rate approximately 21.9

(SD 0.19) days after the �rst reported case. Our model predicted that the initial transmission
rate �0 = 0:99 (day

−1 infective−1) was reduced by 36.4 per cent to �1 = 0:63 by behavioural
changes and that the diagnostic rate increased from 0.08 to 0.70 (day−1) (Table I). The esti-
mates of latent period (1=k) and the infectious period (1=�) were estimated to be approximately
3.65 and 3.37 days, respectively (see Table I). The estimated time from symptom onset to
diagnosis was 1=�1 ≈ 1:43 days (95 per cent CI: 1–2.5), which compares favourably to the
independent estimate of 1.55 days (95 per cent CI: 1.46–1.63) obtained using the dates of no-
ti�cation and dates of onset of symptoms of the 1310 individual clinical records via maximum
likelihood methods (Figure 5). The two independent estimates are therefore consistent.
The simulation studies support our parameter estimates (Figure 4) for the 2003 AHC

epidemic in Colima, Mexico. The parameter �1 is not well identi�ed in 8 of the 20 sets
of possible parameter values for alternative (potential) epidemics. Clearly, �1 should not be
estimated (using this model) in non-comparable epidemic settings (Table II). Caution should
be exercised when quantifying the role of interventions using the decay in the transmission
rate from �0 to �1.
A sensitivity analysis was performed on the �nal epidemic size (Appendix B) to changes

in the time (�) at which interventions began to impact the transmission and diagnostic rates
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Figure 6. The sensitivity of the �nal epidemic size (reported and unreported cases) to the onset of
behavioural changes evoked by public health measures. Negative numbers represent number of days
before the actual estimated intervention time (Table I) and positive numbers represent a delay after the
estimated intervention time. All other parameters have been �xed to their baseline values (Table I).

(Figure 6). Our model predicted an increase in the �nal epidemic size of 63 per cent (3609
cases) for a 5-day delay in the actual estimate of the e�ects of interventions, and a reduction
of 62 per cent (1320 cases) had behavioural changes been in place 5 days sooner than the
actual estimated time (Figure 6).
The expression for R∗

0 =�0=(�+ �0) estimates the average number of secondary cases that
a primary infectious AHC case generates in a fully susceptible population at a demographic
steady state. In addition, an expression for the variance of R∗

0 was derived (equation (2)). The
reproductive number depends on the initial transmission rate (�0), the infectious period (1=�)
and the initial mean time from onset of symptoms to diagnosis (1=�0). The reporting rate
was very low at the beginning of this outbreak (Figure 2). Our estimate of the reproductive
number (R∗

0) is 2.64 with standard deviation 0.65.

5. DISCUSSION

A relatively simple epidemic model (Figure 1) is used to assess underreporting, population
behavioural changes, and the e�ects of basic public health interventions during a Mexican
outbreak of acute haemorrhagic conjunctivitis (AHC). Our model was able to capture the
time-course dynamics of the outbreak with sensible estimates of the relevant parameters. The
force of infection (incidence) was modelled under the assumption of homogeneous mixing
(�SI=N ) [31] as previously demonstrated [14–18].
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The introduction of models that incorporate population structure (e.g. age) is certainly possi-
ble [23], such model extensions capable of testing additional hypotheses. Unfortunately, such
models often require a signi�cant amount of data. The �rst mathematical model that incor-
porated household information was used to study an epidemic of bubonic plague [32] and
age-structured models have been used to capture the seasonal dynamics of measles [22, 33].
Models considering household structure have also been used to study the distribution of the
total number of secondary cases of infection in households invaded by Variola minor [34],
in�uenza and the common cold [19, 35]. However, none of these models considered the role
of interventions.
In this work, we estimated that 38.7 per cent of AHC cases were unreported. Undiagnosed

individuals were more likely to transmit the disease (primarily due to lack of information on
how to avoid further transmission). A reduction in the transmission rate as a consequence of
disseminated public health information (fact sheets) was also considered. However, since there
is a latency in such dissemination of public health information, the average elapsed time (�)
before interventions became e�ective in in�uencing the transmission and diagnostic rates was
estimated. We estimated that the transmission rate was reduced by 36 per cent. The reporting
increased due to behavioural changes in the population. Hence, mitigating the magnitude and
impact of an outbreak is achievable by launching an awareness campaign as the outbreak starts;
instructing individuals (via press releases) about how to avoid contagion (including indirect
contact with contaminated objects such as utensils, glasses, towels, or laundry); stressing the
importance of staying home from work or school until symptoms disappear; and decreasing
the fraction of underreported individuals.
Parameter estimates from models should ideally be corroborated using empirical data.

Unfortunately, either empirical data are not available or available empirical data can only
partially validate model parameter estimates. Our estimates of the infectious period and latent
periods agree with the epidemiology of AHC [36, 37]. However, the expected epidemiological
variability might be due to di�erences between aetiological agents of AHC (i.e. Enterovirus
70, coxsakievirus A24 variant (CA24v), adenovirus 11). Our estimate from model (1) of the
‘mean time to diagnosis’ (1=�1) turned out to be in agreement with an independent estimate
(obtained using maximum likelihood methods on the individual times to diagnosis of the
clinical records of AHC cases generated during the epidemic).
Estimates of the �nal epidemic size were obtained using our analytical expression (equation

10) (Appendix B) which relied on estimates of the number of susceptible individuals around
the time when the interventions were implemented (S�) or the outbreak concluded (S∞). We
also studied the sensitivity of model parameters to changes in the e�ective (assumed constant)
population size (N ), an uncertain quantity at the moment of modelling real disease outbreaks.
Our parameter estimates are not sensitive to changes in the e�ective population size N , an
observation that we have made elsewhere [18].
We found that a typical infectious case generates an average of approximately three

secondary cases during its infectious period in a population of susceptible individuals at a
demographic equilibrium. Our model predicts that behavioural changes in the population, to-
gether with a strategy of contact tracing followed by isolation of infectious cases provide
an e�ective means of disease control. During the AHC outbreak reported here, the Mexican
Institute of Public Health granted three sick days (isolation period at home) to each o�cially
infected worker [13]. We estimated approximately 11 person-years of missed work from the
1310 reported cases (out of our estimated total of 2115 cases including unreported cases).
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Additional data would be needed to assess productivity losses due to the lack of child care,
the impact of unreported cases on productivity losses, medical costs, and costs incurred by
public health departments, to name but a few. Even though AHC is regarded as a self-limiting
disease, its control should be taken seriously, given that its economic impact can be signi�cant.

APPENDIX A: THE REPRODUCTIVE NUMBER, R∗
0

Using the approach of van den Driessche and Watmough [24], we obtained an expression for
the reproductive number R∗

0 for our system with the transmission and the diagnostic rates �xed
to their initial values �0 and �0, respectively. First, one can consider the disease transmission
model consisting of initial conditions and the following system of equations:

ẋi=fi(x)=Fi(x)− Vi(x); i=1; : : : ; 5

where ẋi=fi(x) represents our system (1) and

F=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�0SI=N

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kE

−kE + (�0 + �)I
�0SI

−�0I
−�I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let x0 denote the disease-free equilibrium of (1) and de�ne DF(x0) and DV (x0) as follows:

DF(x0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

DV(x0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k 0 0 0 0

−k �+ �0 0 0 0

0 �0 0 0 0

0 −�0 0 0 0

0 −� 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where F and V are the 2×2 matrices consisting of the �rst two rows and columns of DF(x0)
and DV(x0), respectively. The basic reproductive number is given by the largest eigenvalue
of FV−1:

FV−1 =

⎛
⎝0 �0

0 0

⎞
⎠
⎛
⎝ k 0

−k �+ �0

⎞
⎠

−1

=
1

k(�+ �0)

⎛
⎝0 �0

0 0

⎞
⎠
⎛
⎝�+ �0 0

k k

⎞
⎠

=
1

k(�+ �0)

⎛
⎝�0k �0k

0 0

⎞
⎠

�(FV−1) =
�0

�+ �0
(A1)

APPENDIX B: THE FINAL EPIDEMIC SIZE

The �nal size of an epidemic is tightly linked to its economic impact. Hence, it is of im-
portance to estimate the �nal epidemic size. For the case of benign diseases, the number of
reported cases highly underestimates the �nal epidemic size. Expressions for the �nal epidemic
size have been derived for the standard SIR models and its extensions [38].
Here, an expression for the �nal epidemic size for our model with time-dependent trans-

mission and diagnostic rates (�(t) and �(t)) is derived. From model (1), one can divide U̇ (t)
by Ṡ(t) to get

dU (t)
dS(t)

=
�NI(t)

−�(t)S(t)I(t) = − �
�(t)

N
S(t)

(B1)

Using the fact that �(t) is de�ned as a step function

U (t)−U (0) =−�N
[ ∫ �

0

1
�0S(t)

dS +
∫ t

�

1
�1S(t)

dS
]

=−�N
[(

1
�0

− 1
�1

)
ln(S(�))− 1

�0
ln(S(0)) +

1
�1
ln(S(t))

]

Since U (0)=0, it follows that

U (t)= − �N
[(

1
�0

− 1
�1

)
ln(S(�))− 1

�0
ln(S(0)) +

1
�1
ln(S(t))

]
(B2)
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If we use the fact that limt→∞ I(t)=0 and limt→∞ E(t)=0 and let U∞= limt→∞ U (t) and
S∞= limt→∞ S(t), then we obtain

U∞= − �N
[(

1
�0

− 1
�1

)
ln(S(�))− 1

�0
ln(S(0)) +

1
�1
ln(S∞)

]
(B3)

which gives the �nal number of unreported cases. We obtain similarly an expression for the
total number of reported cases.
By dividing J̇ (t) by U̇ (t), we obtain

dJ (t)
dU (t)

=
�(t)I(t)
�I(t)

=
�(t)
�

Using the fact that �(t) is de�ned as a step function

J (t)− J (0) = 1
�

[ ∫ �

0
�0 dU +

∫ t

�
�1 dU

]

=
1
�
[(�0 − �1)U (�)− �0U (0) + �1U (t)]

Since U (0)=0 and J (0)=0, it follows that

J (t)=
1
�
[(�0 − �1)U (�) + �1U (t)] (B4)

If we let J∞= limt→∞ J (t), then we obtain

J∞=
1
�
[(�0 − �1)U (�) + �1U∞] (B5)

which gives the �nal number of reported cases. With equations (B3) and (B5), one can obtain
an expression for the �nal epidemic size:

U∞ + J∞=
1
�
(�0 − �1)U (�) + (�1 + �)N

[(
− 1
�0
+
1
�1

)
ln(S(�)) +

1
�0
ln(S(0))− 1

�1
ln(S∞)

]
(B6)
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