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Abstract

Large scale simulations of the movements of people in a “virtual” city and their analyses

are used to generate new insights into understanding the dynamic processes that depend

on the interactions between people. Models, based on these interactions, can be used in

optimizing traffic flow, slowing the spread of infectious diseases or predicting the change

in cell phone usage in a disaster. We analyzed cumulative and aggregated data generated

from the simulated movements of 1.6 million individuals in a computer (pseudo agent-

based) model during a typical day in Portland, Oregon. This city is mapped into a graph

with 181, 206 nodes representing physical locations such as buildings. Connecting edges

model individual’s flow between nodes. Edge weights are constructed from the daily

traffic of individuals moving between locations. The number of edges leaving a node (out-

degree), the edge weights (out-traffic), and the edge-weights per location (total out-traffic)

are fitted well by power law distributions. The power law distributions also fit subgraphs

based on work, school, and social/recreational activities. The resulting weighted graph is

a “small world” and has scaling laws consistent with an underlying hierarchical structure.

We also explore the time evolution of the largest connected component and the distribution

of the component sizes. We observe a strong linear correlation between the out-degree

and total out-traffic distributions and significant levels of clustering. We discuss how

∗Los Alamos Unclassified Report LA-UR-02-6658.
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these network features can be used to characterize social networks and their relationship

to dynamic processes.

1 Introduction

Similar scaling laws and patterns have been detected in a great number of systems found in

nature, society, and technology. Networks of scientific collaboration [1][2][3], movie actors [4],

cellular networks [5][6], food webs [7], the Internet [8], the World Wide Web [9, 10], friendship

networks [11] and networks of sexual relationships [12] among others have been analyzed up

to some extent. Several common properties have been identified in such systems. One such

property is the short average distance between nodes, that is, a small number of edges need to

be traversed in order to reach a node from any other node. Another common property is high

levels of clustering [4, 13], a characteristic absent in random networks [14]. Clustering measures

the probability that the neighbors of a node are also neighbors of each other. Networks with

short average distance between nodes and high levels of clustering have been dubbed “small

worlds” [4, 13]. Power-law behavior in the degree distribution is another common property in

many real world networks [15]. That is, the probability that a randomly chosen node has degree

k decays as P (k) ∼ k−γ with γ typically between 2 and 3. Barabási and Albert (BA) intro-

duced an algorithm capable of generating networks with a power-law connectivity distribution

(γ = 3). The BA algorithm generates networks where nodes connect, with higher probability,

to nodes that have a accumulated higher number of connections and stochastically generates

networks with a power-law connectivity distributions in the appropriate scale.

Social networks are often difficult to characterize because of the different perceptions of what

a link constitutes in the social context and the lack of data for large social networks of more

than a few thousand individuals. Even though detailed data on the daily movement of people

in a large city does not exist, these systems have been statistically sampled and the data used to

build detailed simulations for the full population. The insights gained by studying the simulated

movement of people in a virtual city can help guide research in identifying what scaling laws

or underlying structures may exist and should be looked for in a real city. In this article we

analyze a social mobility network that can be defined accurately by the simulated movement of

people between locations in a large city. We analyze the cumulative directed graph generated

from the simulated movement of 1.6 million individuals in or out of 181, 206 locations during a

typical day in Portland, OR. The 181, 206 nodes represent locations in the city and the edges

connections between nodes. The edges are weighted by daily traffic (movement of individuals)
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in or out of these locations. The statistical analysis of the cumulative network reveals that

it is a small world with power-law decay in the out-degree distribution of locations (nodes).

The resulting graph as well as subgraphs based on different activity types exhibit scaling laws

consistent with an underlying hierarhical structure [16, 17]. The out-traffic (weight of the full

network) and the total out-traffic (total weight of the out edges per node) distributions are also

fitted to power laws. We show that the joint distribution of the out-degree and total out-traffic

distributions decays linearly in an appropriate scale. We also explore the time evolution of the

largest component and the distribution of the component sizes.

1.1 Transportation Analysis Simulation System (TRANSIMS)

TRANSIMS [18] is an agent-based simulation model of the daily movement of individuals in

virtual region or city with a complete representation of the population at the level of households

and individual travelers, daily activities of the individuals, and the transportation infrastruc-

ture. The individuals are endowed with demographic characteristics taken from census data

and the households are geographically distributed according to the population distribution. The

transportation network is a precise representation of the city’s transportation infrastructure.

Individuals move across the transportation network using multiple modes including car, transit,

truck, bike, walk, on a second-by-second basis. DMV records are used to assign vehicles to the

households so that the resulting distribution of vehicle types matches the actual distribution.

Individual travelers are assigned a list of activities for the day (including home, work, school,

social/recreational, and shop activities) obtained from the household travel activities survey

for the metropolitan area [19] (Figure 2 shows the frequency of four activity types in a typical

day). Data on activities also include origins, destinations, routes, timing, and forms of trans-

portation used. Activities for itinerant travelers such as bus drivers are generated from real

origin/destination tables.

TRANSIMS consists of six major integrated modules: Population synthesizer, Activity Gen-

erator, Router, Microsimulation and Emissions Estimator. Detailed information on each of

the modules is available [18]. TRANISMS has been designed to give transportation planners

accurate, complete information on traffic impacts, congestion, and pollution.

For the case of the city of Portland, OR, TRANSIMS calculates the simulated movements of 1.6

million individuals in a typical day. The simulated Portland data set includes the time at which

each individual leaves a location and the time of arrival to its next destination (node). These

data are used to calculate the average number of people at each location and the traffic between

any two locations on a typical day. (Table 1 shows a sample of a Portland activity file gener-
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ated by TRANSIMS). Locations where activities are carried out are estimated from observed

land use patterns, travel times and costs of transportation alternatives. These locations are fed

into a routing algorithm that finds the minimum cost paths that are consistent with individual

choices [20, 21, 22]. The simulation land resolution is of 7.5 meters. The simulator provides an

updated estimate of time-dependent travel times for each edge in the network, including the

effects of congestion, to the Router and location estimation algorithms [18], which generate trav-

eling plans. Since the entire process estimates the demand on a transportation network from

census data, land use data, and activity surveys, these estimates can thus be applied to assess

the effects of hypothetical changes such as building new infrastructures or changing downtown

parking prices. Methods based on observed demand cannot handle such situations, since they

have no information on what generates the demand. Simulated traffic patterns compare well

to observed traffic and, consequently, TRANSIMS provides a useful planning tool.

Until recently, it has been difficult to obtain useful estimates on the structure of social networks.

Certain classes of random graphs (scale-free networks [15], small-world networks [11, 13], or

Erdos-Renyi random graphs [14, 23]), have been postulated as good representatives. In addition,

data based models while useful are limited since they have naturally focused on small scales

[24]. While most studies on the analysis of real networks are based on a single snapshot of the

system, TRANSIMS provides powerful time dependent data of the evolution of a location-based

network.

2 Portland’s location-based network

A “typical” realization by the Transportation Analysis Simulation System (TRANSIMS) sim-

ulates the dynamics of 1.6 million individuals in the city of Portland as a directed network,

where the nodes represent locations (i.e. buildings, households, schools, etc.) and the directed

edges (between the nodes) represent the movement (traffic due to activities) of individuals be-

tween locations (nodes). We have analyzed the cumulative network of the whole day as well

as cumulative networks that comprise different time intervals of the day. Here we use the term

“activity” to denote the movement of an individual to the location where the activity will be

carried out. Traffic intensity is modeled by the nonsymmetric mobility matrix W = (wij) of

traffic weights assigned to all directed edges in the network (wij = 0 means that there is no

directed edge connecting node i to node j).
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Figure 1: Structure of the location-based network of the city of Portland. The nodes represent

locations connected via directed edges based on the traffic or movement of individuals (activ-

ities) between the locations. The weights (wij) of the edges represent the daily traffic from

location i to location j.

3 Power law distributions

We calculate the statistical properties of a typical day in the location-based network of this

vitual city from the cumulative mobility data generated by TRANSIMS (see Table 2).

The average out-degree is < k >=
∑n

i=1 ki/n where ki is the degree for node i and n is the

total number of nodes in the network. For the portland network < k >= 29.88 and the out-

degree distribution exhibits power law decay with scaling exponent (γ ≈ 2.7). The out-traffic

(edge weights) and the total out-traffic (edge-weights per node) distributions are also fitted well

by power laws.

The average distance between nodes L is defined as the median of the means Li of the

shortest path lengths connecting a vertex i ∈ V (G) to all other vertices [25]. For our network,

L = 3.1, which is small when compared to the size of the network. In fact, the diameter (D) of
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Figure 2: The number of people active in (a) work activities, (b) school activities, (d) social

activities, and (d) home activities as a function of time (hours) during a ‘typical’ day in Portland,

Oregon.

the graph (the largest of all possible shortest paths between all the locations) is only 8. L and

D are measured using a breadth first search (BFS) algorithm [26] ignoring the edge directions.

The clustering coefficient, C, quantifies the extent to which neighbors of a node are also

neighbors of each other [25]. The clustering coefficient of node i, Ci, is given by

Ci = |E(Γi)| /

(

ki

2

)

where |E(Γi)| is the number of edges in the neighborhood of i (edges connecting the neighbors

of i not including i itself) and
(

ki

2

)

is the maximal number of edges that could be drawn among

the ki neighbors of node i. The clustering coefficient C of the whole network is C =
∑n

i=1 Ci/n.

For a scale-free random graph (BA model) [15] with 181, 206 nodes and m = 16 [27], the

clustering coefficient Crand ≈ (m−1)
8

(lnN)2

N
≈ 0.0015 [28, 29]. The clustering coefficient for our

location-based network, ignoring edge directions, is C = 0.0584, which is roughly 39 times

larger than Crand.
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Person ID Location ID Arrival time(hrs) Departure time(hrs) Activity type

115 4225 0.0000 7.00 home

115 49296 8.00 11.00 work

115 21677 11.2 13.00 work

115 49296 13.2 17.00 work

115 4225 18.00 19.00 home

115 33005 19.25 21.00 social/rec

115 4225 21.3 7.00 home

220 8200 0.0000 8.50 home

220 10917 9.00 14.00 school

220 8200 14.5 18.00 home

220 3480 18.2 20.00 social/rec

220 8200 20.3 8.6 home

Table 1: Sample section of a TRANSIMS activity file. In this example, person 115 arrives for

a social recreational activity at location 33005 at 19.25 o’clock and departs at 21.00 o’clock.

Highly clustered networks have been observed in other systems [4] including the electric

power grid of western US. This grid has a clustering coefficient C = 0.08, about 160 times

larger than the expected value for an equivalent random graph [25]. The few degrees of sepa-

ration between the locations of the (highly clustered) network of the city of Portland “make”

it a small world [13, 11, 25].

Many real-world networks exhibit properties that are consistent with underlying hierarhical

organizations. These networks have groups of nodes that are highly interconnected with few

or no edges connected to nodes outside their group. Hierarchical structures of this type have

been characterized by the clustering coefficient function C(k), where k is the node degree. A

network of movie actors, the semantic web, the World Wide Web, the Internet (autonomous

system level), and some metabolic networks [16, 17] have clustering coefficients that scale as

k−1. The clustering coefficient as a function of degree (ignoring edge directions) in the Port-

land network exhibits similar scaling at various levels of aggregation that include, the whole

network and subnetworks constructed by activity type (work, school and social/recreational

activities, see Figure 3). We constructed subgraphs based on activity types, that is, those

subgraphs constructed from all the directed edges of a specific activity type (i.e work, school,
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Statistical properties Value

Total nodes (N) 181,206

Size of the cumulative largest component (S) 181,192

Total directed edges (E) 5,416,005

Average out-degree (< k >) 29.88

Clustering coefficient (C) 0.0584

Average distance between nodes (L) 3.1

Diameter (D) 8.0

Table 2: Statistical properties of the Portland’s location-based network. S is the size of the

largest component of the cumulative network during the whole day.

Time (hrs) Size of largest component

5.6 27,132

5.8 31,511

6.0 50,242

6.2 54,670

6.4 62,346

6.6 76,290

6.8 84,516

7.0 106,160

Table 3: Size of the largest component just before and after 6 a.m., the time at which a sharp

transition occurs. At midnight, all but 14 locations belong to the largest component (Table 2).

social) during a typical day in the city of Portland. The clustering coefficient of the subnetworks

generated from work, school, and social/recreational activities are: 0.0571, 0.0557, and 0.0575,

respectively. The largest clustering coefficient and closest to the overall clustering coefficient

(C = 0.0584) correponds to the subnetwork constructed from social/recreational activities. It

seems that the whole network, as well as the selected activity subnetworks, support a hierar-

chical structure albeit the nature of such structure (if we choose to characterize by the power

law exponent) is not universal. This agrees with relevant theory [17].

Understanding the temporal properties of networks is critical to the study of superim-

posed dynamics such as the spread of epidemics on networks. Most studies of superim-
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Figure 3: Log-log plots of the clustering coefficient as a function of the out-degree for subnet-

works constructed from work activities, school activities, social activities, and all the activities.

The dotted line has slope −1. Notice the scaling k−1 for the school and social/recreational ac-

tivities. However, for the subnetwork constructed from work activities, the clustering coefficient

is almost independent of the out-degree k.

posed processes on networks assumes that the contact structure is fixed (see for example

[30, 31, 32, 33, 34, 35, 36, 37, 38]). Here, we take a look at the time evolution of the largest

connected component of the location-based network of the city of Portland (Figure 4). We have

observed that a sharp transition occurs at about 6 a.m. In fact, by 7 a.m. the size of the largest

component includes approximately 60% of the locations (nodes). Table 3 shows the size of the

largest component just before and after the sharp transition occurs.

Let Xm(t) be the number of components of size m at time t. Then X(t) =
∑

m≥1 Xm(t) is

the total number of components at time t (Figure 5(a)). Furthermore, the probability P (m)

that a randomly chosen node (location) belongs to a component of size m follows a power law

that gets steeper in time as the giant component forms (Figure 5(b)).

To identify the relevance of the temporal trends, we computed the out-degree distribution of
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Figure 4: The size of the largest component (cluster) over time. A sharp transition is observed

at about 6 a.m when people move from home to work or school.

the network for three different time intervals: The morning from 6 a.m to 12 p.m.; the workday

from 6 a.m. to 6 p.m.; and the full 24 hours. In the morning phase, the out-degree distribution

has a tail that decays as a power law with γ ≃ 2.7 (for the workday γ ≃ 2.43 and for the full

day γ ≃ 2.4). The distribution of the out-degree data has two scaling regions: the number

of locations is approximately constant for out-degree k < 20 and then decays as a power law

for high degree nodes (Fig. 6). The degree distribution for the undirected network (ignoring

edge direction) displays power-law behavior, but with slightly different power-law exponents:

2.3 (morning), 2.48 (work day) and 2.51 (full day).

The strength of the connections in the location-based network is measured by the traffic

(flow of individuals) between locations in a “typical” day of the city of Portland. The log-log

plot of the out-traffic distributions for three different periods of time (Fig. 7) exhibits power

law decay with exponents, γ ≃ 3.56 for the morning, γ ≃ 3.74 for the workday, and γ ≃ 3.76

for the full day. The out-traffic distribution is characterized by a power law distribution for all

values of the traffic-weight matrix W . This is not the case for the out-degree distribution of the

network (see Figure 6) where a power law fits well only for sufficiently large degree k (k > 10).

The distribution of the total out-traffic per location, wi’s (wi =
∑

j wi,j), is characterized by
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Figure 5: (a) The number of components X(t) between 4 a.m. and 8 a.m. (b) Probability

distribution P (m) of the normalized component sizes at two different times of the day. The

component sizes (m) have been normalized by S, the size of the largest component of the

cumulative network during the whole day (Table 1).

two scaling regions. The tail of this distribution decays as a power law with exponent γ = 2.74

(Fig. 8). This is almost the same decay as the out-degree distribution (γ = 2.7) because the

out-degree and the total out-traffic are highly correlated (with correlation coefficient ρ = 0.94).

4 Correlation between out-degree and total out-traffic

The degree of correlation between various network properties depend on the social dynamics

of the population. The systematic generation and resulting structure of these networks is im-

portant to understand dynamic processes such as epidemics that “move” on these networks.

Understanding the mechanisms behind these correlations will be useful in modeling fidelity

networks.

In the Portland network, the out-degree k and total out-traffic v have a correlation coefficient

ρ = 0.94 on a log-log scale with 95% of the nodes (locations) having out-degree and total out-
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Figure 6: Distribution of the out-degrees of the location-based network of the city of Portland.

There are approximately the same number of nodes (locations) with out-degree k = 1, 2, ...10.

For k > 10 the number of nodes with a given out-degree decays as a power law P (k) ∝ k−γ

with (a) γ ≃ 2.7 for the morning (6 a.m.-12 p.m.), γ ≃ 2.43 for the workday (6 a.m.-6 p.m.)

and (b) γ ≃ 2.4 for the full day.

traffic less than 100 (Fig. 9). That is, the density of their joint distribution F (k, v) is highly

concentrated near small values of the out-degree and total out-traffic distributions. The joint

distribution supports a surface that decays linearly when the density is in loge scale (Figure

??).

5 Conclusions

Strikingly similar patterns on data from the movement of 1.6 million individuals in a “typical”

day in the city of Portland have been identified at multiple temporal scales and various levels of

aggregation. The analysis is based on the mapping of people’s movement on a weighted directed

graph where nodes correspond to physical locations and where directed edges, connecting the

nodes, are weighted by the number of people moving in and out of the locations during a typ-

ical day. The clustering coefficient, measuring the local connectedness of the graph, scales as

k−1 (k is the degree of the node) for sufficiently large k. This scaling is consistent with that

obtained from models that postulate underlying hierarhical structures (few nodes get most of
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Figure 7: The out-traffic distribution of the location-based network of the city of Portland

follows a power law (P (k) ∝ k−γ) with (a) γ ≈ 3.56 (morning), γ ≈ 3.74 (afternoon), and (b)

γ ≈ 3.76 (full day). Hence a few connections have high traffic but most connections have low

traffic.

the action). The out-degree distribution in log-log scale is relatively constant for small k but

exhibits power law decay afterwards (P (k) ∝ k−γ). The distribution of daily total out-traffic

between nodes in log-log scale is flat for small k but exhibits power law decay afterwards. The

distribution of the daily out-traffic of individuals between nodes scales as a power law for all k

(degree).

The observed power law distribution in the out-traffic (edge weights) is therefore, support-

ive of the theoretical analysis of Yook et al. [39] who built weighted scale-free (WSF) dynamic

networks and proved that the distribution of the total weight per node (total out-traffic in our

network) is a power law where the weights are exponentially distributed.

There have been limited attempts to identify at least some characteristics of the joint dis-

tributions of network properties. The fact that daily out-degree and total out-traffic data are

highly correlated is consistent again with the results obtained from models that assume an

underlying hierarhical structure (few nodes have most of the connections and get most of the

traffic (weight)). The Portland network exhibits a strong linear correlation between out-degree

and total out-traffic on a log-log scale. We use this time series data to look at the network

“dynamics”. As the activity in the network increases, the size of the maximal connected com-
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Figure 8: Distribution of the total out-traffic for the location-based network of the city of

Portland. There are approximately the same number of locations (nodes) with small total out-

traffic. The number of locations where more than 30 people (approximately) leave each day

decays as a power law with γ ≃ 2.74.

ponent exhibits threshold behavior, that is, a “giant” connected component, suddenly emerges.

The study of superimposed processes on networks such as those associated with the potential

deliberate release of biological agents needs to take into account the fact that traffic is not

constant. Planning, for example, for worst-case scenarios requires knowledge of edge-traffic, in

order to characterize the temporal dynamics of the largest connected network components [40].

6 Acknowledgements

The authors thank Pieter Swart, Leon Arriola, and Albert-László Barabási for interesting and
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