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c We assess the impact of weekday social contact patterns on influenza spread.
c Reduced contacts on weekends produce notable beats in epidemic curve.
c The weekday patterns are sensitive to the influenza latent period.
c 2009 A(H1N1) data from Santiago, Chile shows significant weekday patterns.
c We estimate the influenza latent period by fitting to the Chile data.
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a b s t r a c t

Human social contact patterns show marked day-of-week variations, with a higher frequency of

contacts occurring during weekdays when children are in school, and adults are in contact with co-

workers, than typically occur on weekends. Using epidemic modeling, we show that using the average

of social contacts during the week in the model yields virtually identical predictions of epidemic final

size and the timing of the epidemic incidence peak as a model that incorporates weekday social contact

patterns. This is true of models with a constant weekly average contact rate throughout the year, and

also of models that assume seasonality of transmission.

Our modeling studies reveal, however, that weekday social contact patterns can produce substantial

weekday variations in an influenza incidence curve, and the pattern of variation is sensitive to the

influenza latent period. The possible observability of weekday patterns in daily influenza incidence data

opens up an interesting avenue of further inquiry that can shed light on the latent period of pandemic

influenza. The duration of the latent period must be known with precision in order to design effective

disease intervention strategies, such as use of antivirals. For a hypothetical influenza pandemic, we thus

perform a simulation study to determine the number of cases needed to observe the weekday variation

pattern in influenza epidemic incidence data. Our studies suggest that these patterns should be

observable at 95% confidence in daily influenza hospitalization data from large cities over 75% of

the time.

Using 2009 A(H1N1) daily case data recorded by a large hospital in Santiago, Chile, we show that

significant weekday incidence patterns are evident. From these weekday incidence patterns, we esti-

mate the latent period of influenza to be [0.04, 0.60] days (95% CI). This method for determination of

the influenza latent period in a community setting is novel, and unique in its approach.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Influenza, a viral respiratory disease, is associated with sig-
nificant morbidity and mortality in the population, with a typical
ll rights reserved.
influenza epidemic in the United States killing around 40,000
people per year (Dushoff et al., 2006). During pandemic years, this
number can be much larger. Accurate modeling of the spread of
influenza within a population is crucial to the design of effective
disease intervention strategies, such as the use of antivirals or
social distancing measures.

During the course of the week, particularly comparing week-
days to weekends, human social contact patterns vary, tending to
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Fig. 1. The daily number of A(H1N1)-related emergency department visits at a

large hospital in Santiago, Chile, during the 2009 A(H1N1) epidemic (red). Shown

in blue are the daily number of emergency department visits during the same

period for all causes. Reproduced from Reference (Torres et al., 2010). (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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be higher during weekdays when schools are in session and
adults are in contact with co-workers. To examine the effect of
these contact pattern variations on the spread of influenza, we
use the daily frequency of social contacts from the detailed
sociological contact survey data of Mossong et al. (2008), where
participants kept daily diaries recording the length and nature of
their contacts. Using these data, and the results of a previous
study of the effect of weekday social contact patterns on the
spread of infectious disease (Hens et al., 2009), we determine age-
structured contact matrices for weekdays and weekends. We then
use these matrices in an age-structured deterministic influenza
model (the weekday model) and compare the results to that of a
model that does not take into account weekday contact patterns,
and instead uses a weekly average contact matrix (the average

model). We find that when the average weekly contact rate is
assumed constant throughout the year (ie; no seasonality) the
two models produce virtually identical predictions of epidemic
peak incidence time and final size, in agreement with the results
of previous studies (Bacaer and Abdurahman, 2008).

Influenza is a seasonal disease in countries with temperate
climates, displaying markedly higher attack rates in winter
months. There appear to be several reasons for this, including
seasonality of host health (susceptibility to infection) and seaso-
nal environmental effects on the transmissibility of the virus
(Cauchemez et al., 2008; Alonso et al., 2007; Dowell, 2001;
Lofgren et al., 2007; Lowen et al., 2007; Shaman et al., 2010).
Periodicity of school holiday closures is also thought to play a role
(Chowell et al., 2011; Chao et al., 2010; Cauchemez et al., 2009).
Such seasonality can be important to take into consideration
when modeling pandemic influenza to assess disease intervention
strategies (Feng et al., 2011; Towers et al., 2011, 2012). When we
include seasonal periodicity of the contact rate in the model, we
also find that the average and weekday models produce nearly
identical predictions of epidemic final size and incidence peak
time(s). From a practical standpoint, it is thus sufficient to use the
weekday average contact rate if one is primarily interested in
modeling the overall progression of the epidemic, such as final
size or incidence peak time.

However, our modeling studies demonstrate that weekday
patterns in human social contacts produce a marked weekday
beat structure in the epidemic incidence curve. As we will discuss
in the following sections, inclusion of weekday patterns in the
model has the potential to allow for determination of the latent
period of influenza if the model is fit to temporal patterns in daily
influenza incidence data. Accurate knowledge of the influenza
latent period has important implications for optimization of
disease intervention strategies, such as the use of antiviral treat-
ment (see, for instance, Longini et al., 2004).

We thus perform a statistical study, simulating a hypothetical
pandemic, that determines that the patterns in weekday social
contacts would be expected to likely produce an observable effect
in daily pandemic incidence data from a large city. Using daily
incidence data from A(H1N1)-related emergency department visits
in Santiago, Chile during the 2009 pandemic, we then show that
significant weekday patterns are indeed evident. We fit an age-
structured epidemic model to this incidence data, and determine
that the latent period is less than half a day with 95% confidence.
Our method for determination of the influenza latent period in a
community setting is novel, and unique in its approach.
2. Data

Data used in these studies are the time series of emergency
department visits per day during the 2009 A(H1N1) pandemic at a
large hospital in Santiago, Chile (Torres et al., 2010). The population
of Santiago is 5.9 million (CIA World Factbook, 2011). The visits
are broken down into all visits, and visits made by patients
whose symptoms met the clinical definition of influenza A(H1N1)
infection.

Of the over 10,000 patients clinically diagnosed with A(H1N1),
the average time from symptom onset to diagnosis is 1.4 days,
with a median of 1 day, properties that are consistent with those
of an Exponential distribution with mean 1.4.

In Fig. 1 we show the A(H1N1)-related visits recorded by day
by the hospital. We fit a spline to the epidemic incidence curves,
with enough degrees of freedom to capture the average behavior
without capturing weekday patterns, as shown in Fig. 3. We then
take the averages of the data minus spline fit within weekday; for
instance, for data points that fall on a Monday, the average of the
data minus the spline fit is calculated. The resulting averages by
weekday are shown in the lower plot of Fig. 3.
3. Model

One of the simplest epidemiological models is the so called
compartmental SEIR model (Hethcote, 1976), which keeps track
of the number of susceptible (S), exposed but not yet infectious
(E), infectious (I), and recovered (R) people in the population
using the coupled deterministic ordinary non-linear differential
equations:

S0 ¼ �bðtÞSI=N,

E0 ¼ bðtÞSI=N�kE

I0 ¼ kE�gI,

R0 ¼ gI, ð1Þ

where 1=k is the average latent period for influenza, 1=g is the
average infectious period, bðtÞ is the time-dependent transmission
rate, and population size is given by N¼ SþEþ IþR. Because we
will be considering epidemics of very short duration relative to
human population dynamics, we do not include vital dynamics in
the models we discuss here. We also assume no disease-induced
mortality for simplicity.

Typically the transmission rate bðtÞ ¼ b is assumed to be a
constant. However, for diseases such as influenza, seasonal varia-
tion in the transmission rate is an important consideration (Feng
et al., 2011; Towers et al., 2011, 2012; Towers and Feng, 2009).
Any periodic function can be expressed as a sum of harmonic



Fig. 2. Weekday and average model predictions of daily incidence in a population of 10 million under various assumptions of the latent and infectious periods, as

estimated by Eq. (3). The transmission is assumed to be constant, with R0 ¼ 1:7. A longer latent period reduces the relative variation in weekday patterns, but a longer

infectious period does not. Smaller R0 produces equivalent relative weekday variation in the epidemic curve to that shown here, but the final size of the epidemic is

smaller.
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terms, and in this analysis we model periodicity of transmission
due to seasonal effects on host health, school holidays, and
seasonal environmental effects (such as temperature, humidity,
etc.) using the first order harmonic

bðtÞ ¼ b0½1þE cosð2potÞ�, ð2Þ

where the period is 1=o¼ 365 days, b0 is the average transmis-
sion rate over one period, and E is the degree of seasonal forcing
(Bacaer and Gomes, 2009; Bacaer and Dads, 2010). We define the
b function given in Eq. (2) to have its maximum at the beginning
of a calendar year. The results of this analysis can be easily
generalized to include a phase if it is believed that influenza
transmission peaks at some other time of year, but inclusion of a
phase does not affect the overall conclusions of the study.

The time of introduction of the virus to the population, t0, is a
parameter of the seasonal model when the transmission rate is
expressed in a periodic form. Disease models with seasonal
transmission rates are extremely non-linear, and the final size
and dynamics predicted by such models are strongly dependent
upon the model parameters and initial conditions (Feng et al.,
2011; Towers et al., 2011, 2012; Towers and Feng, 2009; Bacaer
and Gomes, 2009; Dietz, 1976; Hethcote and Levin, 1988; Shi
et al., 2010). This can lead to interesting multiwave dynamics,
such as those observed during the 2009 and 1918 pandemics
(Miller et al., 2009). When there are no periodic parameters in the
model the predicted final size and shape are independent of t0,
and the epidemic incidence curve can exhibit only one peak in the
absence of vital dynamics in the model.
We expand the model in Eqs. (1) to include age heterogeneity,
with mixing between n¼2 different age-stratified classes repre-
senting children less than 19 years of age, and adults:

Si
0
¼ �bðtÞSi

Xn

j ¼ 1

CijðtÞIj=Nj,

Ei
0
¼ bðtÞSi

Xn

j ¼ 1

CijðtÞIj=Nj�kEi,

Ii
0
¼ kEi�gIi,

Ri
0
¼ gIi, ð3Þ

where the population size, N, is N¼
P

iNi ¼
P
ðSiþEiþ IiþRiÞ. The

matrix Cij is known as the contact matrix, and is the average
number of contacts made per day by people in class i with people
in class j. In this analysis we use contact data from the detailed
sociological contact survey data of Mossong et al. (2008), where
participants kept daily diaries recording the length and nature of
their contacts; using the methods of Medlock and Galvani (2009),
we parameterize the contact matrix by averaging the Mossong
survey data wherein respondents estimated the number of daily
contacts by age of respondent and by age of contact.

For constant bðtÞ ¼ b0 and a time invariant contact matrix,
Eqs. (3) can be linearized about the disease free equilibrium to
yield the basic reproduction number:

R0 ¼
b0

2g ðC11þC22Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC11�C22Þ

2
þ4C12C21

q� �
: ð4Þ



Fig. 3. The top two plots show the daily number of H1N1 and non-H1N1 related emergency department visits at a large hospital in Santiago, Chile, during the 2009

A(H1N1) epidemic. Shown in red are spline fits to the distributions. The bottom plot shows the mean of the data minus the spline fit, averaged within weekday. The error

bars represent the one standard deviation uncertainties on the average. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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This is also a good approximation to the R0 of the weekday
model, with or without seasonality of transmission (Williams and
Dye, 1997; Moneim, 2007; Wang and Zhang, 2007; Bacaer, 2007).

To model weekday variations in social contacts, we separate
the contact matrix into a weekday matrix, Cweek, and a weekend
matrix, Cend. Hens et al. (2009) point out that the peer-to-peer
contacts between school children and co-workers are reduced
during weekends by a factor sufficient to reduce the overall basic
reproduction number, R0, by around 20%. We find that a 25%
reduction in peer-to-peer contacts from weekday to weekends is
sufficient to achieve a reduction inR0 by 19%. The elements of the
weekly average contact matrix C ¼ ð5Cweek

þ2Cend
Þ=7 are shown

in Table 1.1

The model has initial conditions at the time of introduction, t0,
of the index case into the population

Siðt0Þ ¼Nið1�viÞ�1,

Iiðt0Þ ¼ 1,

Eiðt0Þ ¼ 0,

Riðt0Þ ¼ vi, ð5Þ

where i¼1,2 and v1 and v2 are the initial immune fractions due to
prior infection or vaccination, and N1 and N2 are based on the
demographics of the population. In this analysis we assume no
pre-immunity for simplicity (ie; v1 ¼ v2 ¼ 0).

The parameters of the model are shown in Table 1.
1 Note that the off-diagonal elements of Cweek and Cend are the same as that of

the average matrix, C, and the diagonal elements can easily be obtained using the

relationships Cweek
ii ¼ ð7=ð5þ2pÞÞCii and Cend

ii ¼ ð7p=ð5þ2pÞÞCii , where p¼0.75.
4. Results

4.1. Comparison of weekday and average models

In this section we study and compare results of the model in
Eqs. (3) under two scenarios:
1.
 Contact matrix varies from a weekday contact matrix to a
weekend contact matrix (the weekday model).
2.
 Contact matrix remains constant at an average of the weekday
and weekend contact matrices (the average model).

We first consider the case of a constant transmission rate. The
latent and infectious periods for seasonal influenza have been
estimated from challenge and observational studies to be 1=k¼
1:1 and 1=g¼ 4:8 days, respectively (Carrat et al., 2008). Near the
beginning of the 2009 A(H1N1) pandemic in the Northern Hemi-
sphere, the R0 in community settings was estimated to be around
1.3–1.7 (Towers and Feng, 2009; Fraser et al., 2009; Yang et al., 2009).
To model an equivalent pandemic to that of 2009, we assume bðtÞ ¼
b0, set Cij(t) constant at C ¼ ð5Cweek

þ2Cend
Þ=7, and solve Eq. (4) for

b0 as a function of R0. Assuming R0 ¼ 1:7, we then estimate b0.
The resulting epidemic incidence curves are shown in the top

plot of Fig. 4 for the average and weekday models, for a popula-
tion of size N¼ 10,000,000, and assuming no background immu-
nity to the virus. The temporal profile of the weekday model
shows clear weekly beats in the epidemic incidence curve,
whereas the average model, as expected, does not. However, it
should be noted that the two models yield virtually identical
predictions of the peak times and final sizes versus R0, as seen in
the bottom two plots in Fig. 4. This is in agreement with the
results of Bacaer and Abdurahman (2008), which found little
difference in the growth rate prediction of an SEIR model with



Table 1
Definition of symbols and parameter values used in simulations.

Variables Definition Value (range)

S(t) Number of susceptible individuals at time t

E(t) Number of exposed individuals at time t

I(t) Number of infectious individuals at time t

R(t) Number of recovered individuals at time t

Parameters

1=k Avg sojourn in Exposed class 1=k¼ 1:1 days (Carrat et al., 2008)

1=g Avg sojourn in Infectious class 1=g¼ 4:8 days (Carrat et al., 2008)

t0 time of introduction of the virus to the population Varied

f Fraction of population under 19 years of age 0.30

N Population size 10,000,000

C11 Avg number of child-to-child contacts per day 8.9

C12 Avg number of child-to-adult contacts per day 5.5

C21 Avg number of adult-to-child contacts per day 1.9

C22 Avg number of adult-to-adult contacts per day 9.3

R0 Reproduction number of pandemic influenza 1.5

b0 Average transmission rate R0g=12:4

(see Eq. (4))

E Oscillation magnitude of seasonal transmission rate, bðtÞ 0.30

p Scale factor for peer-to-peer contact during weekends 0.75

Fig. 4. The top plot shows the epidemic incidence curves for the average and weekday influenza models (see text for details), using a constant transmission rate, with a

population of size N ¼ 10,000,000, and assuming no pre-immunity to the virus. As seen in the bottom two plots, for all R0, the average and weekday model yield similar

predictions for the epidemic final size and peak time.
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a single age class and a constant contact rate compared to that
predicted by a model that included weekly periodicity in the
contact rate, as long as the relative variation in the contact rate
was less than around 50% (which is the case here).

Turning our attention now to the seasonal model, we note that
data and modeling studies indicate that values of 0.25–0.35 appear
to be reasonable estimates for transmission rate seasonal forcing
term, E (Towers and Feng, 2009; Bacaer and Dads, 2010; Ferguson
et al., 2003). Here we assume E¼ 0:30, and again assume R0 ¼ 1:7,
calculating b0 as above. In Fig. 5 we show the number of new
infections vs time for two different times of introduction of the virus
to the population, for a population of size N¼ 10,000,000, and
assuming no pre-immunity to the virus. Again the weekday model
exhibits obvious weekday structure, and the average model closely
matches the overall average shape of the epidemic incidence curve.
In Fig. 6 we compare the weekday and average seasonal model
predictions of final size versus time of introduction of the virus to
the population, assuming R0 ¼ 1:7. Fig. 6 also compares the
predictions of the two models of the time average of the incidence
vs time of introduction of the virus; if we have incidence
measurements, Yi, at i¼ 1, . . . ,k consecutive time points, ti,
along the epidemic curve, the time average of the incidence is
defined as

t ¼

Pk
i ¼ 1 tiYiPk
i ¼ 1 Yi

: ð6Þ

For a symmetric incidence distribution with one peak, t is the
same as the peak time. There is marked agreement between the
predictions of final size and t of the two models.
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4.2. Observability of weekday patterns in data

An important consideration is observability of the phenom-
enon of weekday beats in influenza daily epidemic data. Obser-
vability is affected by various factors:
�
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hypothesis of no weekday variation; larger relative weekly
variation of the ‘‘wiggles’’ in the epidemic curve increases the
probability of detecting significant evidence of weekday patterns
in incidence.
. 5. The number of new infections vs time (incidence) for two different times of
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. 6. Time average of the incidence and final size of the epidemic vs time of introducti

h a seasonal transmission rate.
�

on o
The number of cases detected during the course of the
epidemic; if only a very small fraction of cases are detected,
the relative stochasticity in the detected daily incidence will
be large. Large relative stochasticity makes it less probable to
detect significant evidence of weekday patterns in incidence.

�
 The final size of the epidemic; a smaller R0 results in a smaller

final size, which increases the relative stochasticity in the
detected daily incidence.

�
 The probability distribution assumed for the time elapsed

between onset of infectiousness and detection of the case; a
broad probability distribution smears out variations in the
daily incidence due to weekday variations in contact, making
those variations harder to detect.

In Fig. 2 we show the predicted total daily incidence in a
population of 10 million for the weekday and average models
under various assumptions of k and g. The model predictions are
from Eqs. (3) under the assumption of R0 ¼ 1:7 and constant
transmissibility. The relative weekday variation in the curve is
most affected by the latent period, 1=k, with a short 1=k of only
1 day producing a relative variation of around 6–7% compared to
the average model (regardless of the value of g and R0), and a
longer 1=k of 10 days producing a relative weekday variation of
only around 1% (again, insensitive to the value of g and R0). Thus
a short latent period would result in greater observability of
weekday patterns compared to a long latent period.

We find that, for a given R0 and case detection fraction, the
duration of the epidemic will not affect the observability if due to
an increase in the length of the infectious period; a choice of g
that doubles the epidemic duration also halves the incidence in
each bin, although the weekday variation relative to the average
model remains the same (compare, for instance, plots b and c in
Fig. 2). The longer epidemic does provide more observations of
how the daily incidence on a particular day of the week differs
from the expected incidence under the null hypothesis that no
weekday patterns in incidence are present. However, the longer
epidemic also reduces the daily incidence by an amount that
increases the relative stochasticity of each observation, exactly
f the virus to the population, as predicted by the weekday and average models
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counterbalancing the effect of having more time points to observe
the weekday variation. Thus the value of g has little effect on the
observability of weekday patterns. If the long duration of the
epidemic is due to a long latent period, the observability of
weekday patterns is reduced because of the decrease in the
relative weekday variation in the daily incidence curve.

To study the effect of case detection rate on observability, we
use the weekday model to estimate a hypothetical daily hospita-
lization incidence in a population of N¼ 10,000,000, assuming a
constant transmission rate with R0 ¼ 1:7, and 1=g¼ 4:8 days
(Carrat et al., 2008). To simulate the difference between time of
becoming infectious and time of detection, we convolve the
incidence curve determined from Eqs. (3) with an Exponential
distribution with mean 1.4 days (Torres et al., 2010). The
convolution is achieved by numerically integrating

ypredðtÞ ¼

Z 1
0

dtYpredðt�tÞpðtÞ, ð7Þ

where YpredðtÞ is the model prediction of the number of people
entering the symptomatic I class at time t, and pðtÞ is the
probability that an infectious case will be confirmed at time t
after entering the I class.

We scale
P

ty
predðtÞ to simulate varying numbers of total

detected cases over the course of the epidemic, from 1000 to
50,000 (with fewer detected cases implying a lower case detec-
tion fraction). To obtain the final simulated epidemic incidence
curve, we randomly Poisson vary the resulting number of
detected cases at each time bin, ti, around the mean, ypredðtiÞ.
We then examine an eight week period centered around the time
of peak epidemic incidence. A spline curve was fit to this
distribution, with degrees of freedom sufficiently high to capture
the essential shape of the distribution, but not so high as to fit to
the short term temporal patterns in the distribution. It was
checked that the results of the analysis were insensitive to minor
changes in the degrees of freedom of the spline fit.

We repeat the epidemic incidence curve simulation procedure
1000 times. We calculate the Pearson-w2 statistic comparing the
weekday distribution of the simulated data minus the spline fit
with the expected model. We count the number of simulated data
sets for which this distribution is consistent with the expected
pattern from the weekday model to a greater than 5% CL, and
yield data minus spline inconsistent with no weekday pattern to
greater than 95%.

When the size of the simulated data sample is 1000 (5000,
10,000, 50,000), weekday patterns are observable at a 95% CL
around 15% (45%, 75%, 499%) of the time.

The total number of infections predicted by the model is
7.2 million. If we assume a 65% symptomatic rate (Elder et al.,
1996; King et al., 1988), a hospitalization rate of symptomatic
cases of 0.0045 (Reed et al., 2009), and assume that 50% of all
hospitalized cases are confirmed to be influenza, we predict that
around 10,000 confirmed hospitalized cases will occur in the
population. Thus weekday patterns would be expected to be
observable at a 95% CL in such data around 75% of the time.

Using a larger mean in the Exponential convolution to simu-
late time to reporting (such as would perhaps be appropriate for
hospitalization or ICU data compared to data based on visits to an
emergency department or physician’s office) will lower the
observability of the weekday phenomenon. The average time
between onset of symptoms and hospitalization has not been
well studied, and may perhaps be longer for hospitalized cases
than cases identified in an emergency department of physicians
office; for instance, communication with the authors and the New
South Wales Department of Health reveals that during the 2009
pandemic the average time between first symptoms and hospi-
talization of the 240 people admitted to the ICU with confirmed
A(H1N1) infection was 5 days (range from 2 to 7.5 days). If this
mean is used instead of the 1.4 day mean observed in the
Santiago, Chile emergency department visits, the weekday beat
phenomenon is only observable 50% of the time when the total
number of cases in the sample is 50,000.

Similarly, as expected from the discussion above, the simu-
lated data studies show that the value of the latent period, 1=k,
affects observability; if we simulate time to reporting with an
Exponential of mean 1.4, and use 1=k¼ 3 days instead of 1=k¼
1:1 days, the weekday beat phenomenon is only observable
around 80% of the time when the total number of cases in the
sample is 50,000. Using 1=k¼ 5 days reduces the observability to
50% for a sample of that size. It thus appears that the observation
of weekday beat phenomenon in incidence data in and of itself
implies that 1=k is likely low.

4.3. Estimation of latent period using Santiago, Chile pandemic

influenza data

In Fig. 3 we show the A(H1N1) and non-A(H1N1) related visits
recorded by day by a large hospital in Santiago, Chile during the
2009 A(H1N1) influenza epidemic (Torres et al., 2010). We fit a
spline to the epidemic incidence curves, with enough degrees of
freedom to capture the average behavior without capturing
weekday patterns. The lower plot in Fig. 3 shows the data minus
spline fit, averaged by weekday. The results of the lower plot are
insensitive to minor changes in the degrees of freedom used in
the spline fits. In the non-A(H1N1)-related visits, significant
patterns are evident that are likely due to temporal patterns in
healthcare-seeking behavior: the most likely days to visit the
emergency department for non-A(H1N1)-related reasons were
Monday and Tuesday, a pattern that matches that observed in a
study of weekday patterns in emergency department visits in
New York (New York Department of Health, 2011). Interestingly,
Monday and Tuesday were the least likely days to visit for
A(H1N1)-related reasons. It is unknown how much the weekday
patterns of A(H1N1)-related visits are affected by the general
patterns of healthcare seeking behaviors, but it is clear that any
correction for healthcare seeking behaviors would magnify the
already significant dip in A(H1N1)-related visits on Monday and
Tuesday.

We fit to the A(H1N1) incidence data using a weekday SEIR
model; since the epidemic occurs over a relatively short period,
we assume that the average transmission rate is approximately
constant throughout the epidemic. There were three public holi-
days during the epidemic, occurring on May 1, 21, and June 29.
We use a weekend contact matrix in the model on those days. We
set 1=g¼ 4:8 days (Carrat et al., 2008), and the optimal values of
the time of introduction t0, g, k, and the transmission rate, b, are
determined by fitting the parameters of the model to the M¼62
data points.

The two most common model parameter estimation methods
are maximum likelihood and least squares estimation (MLE and
LSE, respectively). MLE is perhaps not as widely recognized as LSE
in the field of mathematical biology, but is a standard approach to
parameter estimation and inference in statistics. MLE has many
optimal properties in estimation. For instance, parameter esti-
mates from MLE are consistent (the true parameter value that
generated the data is recovered asymptotically, which means that
for data of sufficiently large samples the estimate is unbiased),
and efficient (which means that the lowest-possible variance of
parameter estimates is achieved asymptotically) (Myung, 2003;
Cowan, 1998). In contrast, parameter estimates from LSE methods
in general have neither properties (Cowan, 1998).

The MLE method estimates model parameters by maximizing
the probability of observing the data, under the assumption that



Fig. 7. The blue points in the left plot represent the daily number of H1N1 related emergency department visits at a large hospital in Santiago, Chile, during the 2009

A(H1N1) epidemic. Shown in black is the best fit to the data using an SEIR model with weekday contact patterns. The red line represents a spline fit to the model prediction

(the spline fit to the data is shown in Fig. 3). The right plot shows the average within weekday of the model minus spline (black), and data minus spline (blue). The error

bars represent the one standard deviation uncertainties on the averages. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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the data are described by the model. In this case, if we assume
that the average number of new infectious people at time tm is the
disease model prediction, lm ¼ ypredðtm9k,g,bÞ, and that the prob-
ability distribution underlying the stochasticity in each bin is the
Poisson distribution with that mean, the probability (likelihood)
of observing the data given the model parameters k, g, and b is

L¼
YM

m ¼ 1

ðlmÞ
ydata

m e�lm=ðydata
m Þ!: ð8Þ

The best-fit disease model parameters are the ones that maximize
this probability.

In practice, sums of logarithms are easier to work with than
products of probabilities, and maximizing the sum of the probability
logarithms is equivalent to maximizing their product (Cowan, 1998).
We thus find the best fit k and b by maximizing the log likelihood

logL¼
XM

m ¼ 1

ydata
m logðypredðtm9k,g,bÞÞ�ypredðtm9k,g,bÞ: ð9Þ

The best fit to the distribution is shown in Fig. 7. The 95% CI estimate
of the latent period from the fit is 1=k¼ ½0:04,0:60� days. The 95% CI
estimate of the time of introduction of the virus is t0 ¼ ½75,88� days
(i.e.; near the end of March, 2009), in reasonable agreement with
studies of data from Mexico, the origin of the 2009 A(H1N1)
epidemic, that showed the virus was introduced there sometime
around the end of February (Fraser et al., 2009). The 95% CI estimate
of the infectious period is 1=g¼ ½5:3,6:3� days, slightly higher than
the value of 1=g¼ 4:8 days estimated from volunteer challenge
studies. The 95% CI estimate of R0 is [1.7,1.9], again in approximate
agreement with the various predictions of previous studies of 2009
A(H1N1) data (Towers and Feng, 2009; Fraser et al., 2009; Yang
et al., 2009; Nishiura et al., 2009).
5. Discussion

In this paper we examined an age-structured SIR epidemic
model with and without seasonally varying transmission rates,
and with and without contact rates that varied by weekday.

For both the constant and seasonal transmission rate model, we
found that taking into account weekday variations did not change
the model prediction of the peak incidence time and final size, but
did cause notable weekday patterns in the epidemic incidence curve.

Because the weekday patterns predicted by the model depend
on the latent period, 1=k, such patterns can be used to estimate
1=k if it is possible to observe them in data. To explore the issue
of observability of this phenomenon in pandemic influenza data,
we assumed a population size of 10 million, and R0 ¼ 1:7. We
then simulated synthetic data samples of various sizes from 1000
to 50,000 cases. We convolved the incidence curve predicted by
the disease model with an Exponential distribution to simulate
the time between infection to detection of infection, and ran-
domly Poisson varied the bins of the distribution about the mean.
Under these assumptions, we found that in a population of 10
million people and a sample size of 10,000 (50,000), the phenom-
enon of weekly beats in the hospitalization data should be
observable at a 95% CL over 75% (499%) of the time. The results
of this study, of course, rely upon our model and all subsequent
assumptions being applicable to the study population.

We then examined a sample of over 10,000 influenza related
emergency department visits recorded daily by a large hospital in
Santiago, Chile during the 2009 A(H1N1) epidemic. We found that
significant weekday patterns were evident, and were inconsistent
with weekday patterns in healthcare seeking behaviors. Fitting
to the epidemic incidence curve using an SEIR weekday model
determined that the latent period is 1=k¼ ½0:04,0:60� days (95% CI).

This method for determination of the latent period from cases
in a community setting is novel and unique, and yields a value of
1=k that is quite consistent with results of viral challenge studies;
the meta-analysis of influenza virus challenge studies presented
in Carrat et al. (2008) determines that 83% (97%, 100%) of 77
participants had detectable virus shedding after 24 h (48, 72).
This distribution is consistent with that of an Exponential dis-
tribution with a mean of [0.4,0.75] days (95% CI).

Previous studies of spread of influenza in a community setting
estimate the incubation period as the time from contact with an
infected person to the onset of symptoms (Tuite et al., 2010;
Moser et al., 1979; Ghani et al., 2009; Lessler et al., 2009), which is
not necessarily the same as the time from contact to onset of
infectiousness (latent period). The studies determine the incuba-
tion period to be from 1.4 to 4 days, which is longer than the
latent period determined by this study. However, Carrat et al.
(2008) note that viral shedding can be detected at least 24–48 h
before symptom onset; in conjunction with the results of this
study, it appears that the latent period of influenza is shorter than
the incubation period and coincides with the onset of detectable
viral shedding, not the later onset of symptoms. This knowledge
is invaluable towards the development of models for the design
of effective disease intervention strategies, such as the use of
antivirals.
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